NeST: A Neural Network Synthesis Tool Based on a Grow-and-Prune Paradigm
نویسندگان
چکیده
Neural networks (NNs) have begun to have a pervasive impact on various applications of machine learning. However, the problem of finding an optimal NN architecture for large applications has remained open for several decades. Conventional approaches search for the optimal NN architecture through extensive trial-and-error. Such a procedure is quite inefficient. In addition, the generated NN architectures incur substantial redundancy. To address these problems, we propose an NN synthesis tool (NeST) that automatically generates very compact architectures for a given dataset. NeST starts with a seed NN architecture. It iteratively tunes the architecture with gradient-based growth and magnitudebased pruning of neurons and connections. Our experimental results show that NeST yields accurate yet very compact NNs with a wide range of seed architecture selection. For example, for the LeNet-300-100 (LeNet-5) NN architecture derived from the MNIST dataset, we reduce network parameters by 34.1× (74.3×) and floating-point operations (FLOPs) by 35.8× (43.7×). For the AlexNet NN architecture derived from the ImageNet dataset, we reduce network parameters by 15.7× and FLOPs by 4.6×. All these results are the current state-of-the-art for these architectures.
منابع مشابه
Kinematic Synthesis of Parallel Manipulator via Neural Network Approach
In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملDevelopment of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.02017 شماره
صفحات -
تاریخ انتشار 2017